01背包
01背包问题表示如下
有一个容量为V的背包,还有n个物体。现在忽略物体实际几何形状,我们认为只要背包的剩余容量大于等于物体体积,那就可以装进背包里。每个物体都有两个属性,即体积w和价值v。
问:如何向背包装物体才能使背包中物体的总价值最大?
为什么不用贪心?
我在第一次做这个题目时考虑的是贪心算法。所谓贪心问题,就是每一步决策都采取最优解,按照此方案最后结果也是最优解。
为什么这个问题不能用贪心呢?
举个例子
我的背包容量为10,而且有4个物体,它们的体积和价值分别为
w1 = 8, v1 = 9
w2 = 3, v2 = 3
w3 = 4, v3 = 4
w4 = 3, v4 = 3
贪心是每一步采取最优拿法,即每一次都优先拿价值与体积比值最大的物体
c1 = v1/w1 = 1.125(最大)
c2 = v2/w2 = 1
c3 = v3/w3 = 1
c4 = v4/w4 = 1
所以优先拿第一个物体,随后背包再也装不下其他物体了,则最大价值为9。
但是这个问题的最优解是取物体2,3,4装进背包,最大价值为3+4+3=10!!!
所以这个问题不可以用贪心法来处理。
代码:
1 |
|
All articles in this blog are licensed under CC BY-NC-SA 4.0 unless stating additionally.